The neural EGF family member CALEB/NGC mediates dendritic tree and spine complexity.

نویسندگان

  • Nicola Brandt
  • Kristin Franke
  • Mladen-Roko Rasin
  • Jan Baumgart
  • Johannes Vogt
  • Sergey Khrulev
  • Burkhard Hassel
  • Elena E Pohl
  • Nenad Sestan
  • Robert Nitsch
  • Stefan Schumacher
چکیده

The development of dendritic arborizations and spines is essential for neuronal information processing, and abnormal dendritic structures and/or alterations in spine morphology are consistent features of neurons in patients with mental retardation. We identify the neural EGF family member CALEB/NGC as a critical mediator of dendritic tree complexity and spine formation. Overexpression of CALEB/NGC enhances dendritic branching and increases the complexity of dendritic spines and filopodia. Genetic and functional inactivation of CALEB/NGC impairs dendritic arborization and spine formation. Genetic manipulations of individual neurons in an otherwise unaffected microenvironment in the intact mouse cortex by in utero electroporation confirm these results. The EGF-like domain of CALEB/NGC drives both dendritic branching and spine morphogenesis. The phosphatidylinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway and protein kinase C (PKC) are important for CALEB/NGC-induced stimulation of dendritic branching. In contrast, CALEB/NGC-induced spine morphogenesis is independent of PI3K but depends on PKC. Thus, our findings reveal a novel switch of specificity in signaling leading to neuronal process differentiation in consecutive developmental events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chicken Acidic Leucine-rich EGF-like Domain Containing Brain Protein (CALEB), a Neural Member of the EGF Family of Differentiation Factors, Is Implicated in Neurite Formation

Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB) was identified by combining binding assays with immunological screens in the chicken nervous system as a novel member of the EGF family of differentiation factors. cDNA cloning indicates that CALEB is a multidomain protein that consists of an NH2-terminal glycosylation region, a leucine-proline-rich segment, an acidic ...

متن کامل

A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4.

The morphology of the dendritic tree is critical to neuronal function and neural circuit wiring. Several Wnt family members have been demonstrated to play important roles in dendrite development. However, the Wnt receptors responsible for mediating this process remain largely elusive. Using primary hippocampal neuronal cultures as a model system, we report that Frizzled4 (Fzd4), a member of the...

متن کامل

Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...

متن کامل

Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation.

Dendritic filopodia are long, thin, actin-rich, and dynamic protrusions that are thought to play a critical role as a precursor of spines during neural development. We reported previously that a telencephalon-specific cell adhesion molecule, telencephalin (TLCN) [intercellular adhesion molecule-5 (ICAM-5)], is highly expressed in dendritic filopodia, facilitates the filopodia formation, and slo...

متن کامل

Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 26 9  شماره 

صفحات  -

تاریخ انتشار 2007